Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Monit Comput ; 35(1): 71-78, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31989416

RESUMO

An algorithm derived from machine learning uses the arterial waveform to predict intraoperative hypotension some minutes before episodes, possibly giving clinician's time to intervene and prevent hypotension. Whether the Hypotension Prediction Index works well with noninvasive arterial pressure waveforms remains unknown. We therefore evaluated sensitivity, specificity, and positive predictive value of the Index based on non-invasive arterial waveform estimates. We used continuous hemodynamic data measured from ClearSight (formerly Nexfin) noninvasive finger blood pressure monitors in surgical patients. We re-evaluated data from a trial that included 320 adults ≥ 45 years old designated ASA physical status 3 or 4 who had moderate-to-high-risk non-cardiac surgery with general anesthesia. We calculated sensitivity and specificity for predicting hypotension, defined as mean arterial pressure ≤ 65 mmHg for at least 1 min, and characterized the relationship with receiver operating characteristics curves. We also evaluated the number of hypotensive events at various ranges of the Hypotension Prediction Index. And finally, we calculated the positive predictive value for hypotension episodes when the Prediction Index threshold was 85. The algorithm predicted hypotension 5 min in advance, with a sensitivity of 0.86 [95% confidence interval 0.82, 0.89] and specificity 0.86 [0.82, 0.89]. At 10 min, the sensitivity was 0.83 [0.79, 0.86] and the specificity was 0.83 [0.79, 0.86]. And at 15 min, the sensitivity was 0.75 [0.71, 0.80] and the specificity was 0.75 [0.71, 0.80]. The positive predictive value of the algorithm prediction at an Index threshold of 85 was 0.83 [0.79, 0.87]. A Hypotension Prediction Index of 80-89 provided a median of 6.0 [95% confidence interval 5.3, 6.7] minutes warning before mean arterial pressure decreased to < 65 mmHg. The Hypotension Prediction Index, which was developed and validated with invasive arterial waveforms, predicts intraoperative hypotension reasonably well from non-invasive estimates of the arterial waveform. Hypotension prediction, along with appropriate management, can potentially reduce intraoperative hypotension. Being able to use the non-invasive pressure waveform will widen the range of patients who might benefit.Clinical Trial Number: ClinicalTrials.gov NCT02872896.


Assuntos
Pressão Arterial , Hipotensão , Adulto , Humanos , Hipotensão/diagnóstico , Aprendizado de Máquina , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Sensibilidade e Especificidade
2.
Anesthesiology ; 129(4): 663-674, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29894315

RESUMO

WHAT WE ALREADY KNOW ABOUT THIS TOPIC: WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: With appropriate algorithms, computers can learn to detect patterns and associations in large data sets. The authors' goal was to apply machine learning to arterial pressure waveforms and create an algorithm to predict hypotension. The algorithm detects early alteration in waveforms that can herald the weakening of cardiovascular compensatory mechanisms affecting preload, afterload, and contractility. METHODS: The algorithm was developed with two different data sources: (1) a retrospective cohort, used for training, consisting of 1,334 patients' records with 545,959 min of arterial waveform recording and 25,461 episodes of hypotension; and (2) a prospective, local hospital cohort used for external validation, consisting of 204 patients' records with 33,236 min of arterial waveform recording and 1,923 episodes of hypotension. The algorithm relates a large set of features calculated from the high-fidelity arterial pressure waveform to the prediction of an upcoming hypotensive event (mean arterial pressure < 65 mmHg). Receiver-operating characteristic curve analysis evaluated the algorithm's success in predicting hypotension, defined as mean arterial pressure less than 65 mmHg. RESULTS: Using 3,022 individual features per cardiac cycle, the algorithm predicted arterial hypotension with a sensitivity and specificity of 88% (85 to 90%) and 87% (85 to 90%) 15 min before a hypotensive event (area under the curve, 0.95 [0.94 to 0.95]); 89% (87 to 91%) and 90% (87 to 92%) 10 min before (area under the curve, 0.95 [0.95 to 0.96]); 92% (90 to 94%) and 92% (90 to 94%) 5 min before (area under the curve, 0.97 [0.97 to 0.98]). CONCLUSIONS: The results demonstrate that a machine-learning algorithm can be trained, with large data sets of high-fidelity arterial waveforms, to predict hypotension in surgical patients' records.


Assuntos
Algoritmos , Pressão Arterial/fisiologia , Hipotensão/diagnóstico , Hipotensão/fisiopatologia , Aprendizado de Máquina , Análise de Ondaletas , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
3.
Clin Chem ; 57(5): 719-28, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21402800

RESUMO

BACKGROUND: In 2008, the US Food and Drug Administration (FDA) issued a Guidance for Industry statement formally recognizing (during drug development) the conjoined nature of type 2 diabetes (T2D) and cardiovascular disease (CVD), which has precipitated an urgent need for panels of markers (and means of analysis) that are able to differentiate subtypes of CVD in the context of T2D. Here, we explore the possibility of creating such panels using the working hypothesis that proteins, in addition to carrying time-cumulative marks of hyperglycemia (e.g., protein glycation in the form of Hb A(1c)), may carry analogous information with regard to systemic oxidative stress and aberrant enzymatic signaling related to underlying pathobiologies involved in T2D and/or CVD. METHODS: We used mass spectrometric immunoassay to quantify, in targeted fashion, relative differences in the glycation, oxidation, and truncation of 11 specific proteins. RESULTS: Protein oxidation and truncation (owing to modified enzymatic activity) are able to distinguish between subsets of diabetic patients with or without a history of myocardial infarction and/or congestive heart failure where markers of glycation alone cannot. CONCLUSION: Markers based on protein modifications aligned with the known pathobiologies of T2D represent a reservoir of potential cardiovascular markers that are needed to develop the next generation of antidiabetes medications.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Proteoma/metabolismo , Biomarcadores/sangue , Diabetes Mellitus Tipo 2/complicações , Glicosilação , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/complicações , Humanos , Imunoensaio , Infarto do Miocárdio/sangue , Infarto do Miocárdio/complicações , Oxirredução , Mutação Puntual , Análise de Componente Principal , Processamento de Proteína Pós-Traducional , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...